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Doppleron-catalyzed Bragg resonances in atom optics
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A novel scheme to achieve large-angle atomic diffraction by standing-wave fields is proposed. It uses a high-
order Doppleron resonance as a catalyst to speed up a high-order Bragg resonance by orders of magnitude.
This effect occurs when the atom-field frequency detuning is such that the Bragg resonance and the Doppleron
resonance become degenerate.

Of central importance to atom interferometry' 4 is
the construction of effective atomic beam splitters
that provide large scattering angles. In beam split-
ters based on the near-resonant interaction between
atoms and standing-wave fields,5 9 the splitting of
the atomic wave function results from the fact that
each absorption or emission process is accompanied
by a change of the atomic center-of-mass momentum
by Sk, with k being the wave number of the field.
The most common realization of such a beam split-
ter relies on first-order Bragg scattering, which gen-
erates a splitting of the atomic wave function in
momentum space by 21k. For typical atomic
beams, with velocities in the 100-m/s range, this
produces extremely small scattering angles that not
only complicate the detection of the splitting but,
more importantly, limit one's ability to affect the
two partial wave functions differentially. Higher-
order Bragg scattering would of course improve the
situation and has been numerically demonstrated.' 0

However, its practicality is questionable, owing to
the need for atom-field interaction times that scale
exponentially with the scattering order.

Attempts at solving this problem include the use
of three-level transition schemes" and the applica-
tion of velocity-tuned or Doppleron resonances. 12-14
In this Letter we outline a novel scheme that uses a
high-order Doppleron resonance as a catalyst to
speed up a Bragg resonance by orders of magnitude.
A similar scheme involving a first-order Bragg
resonance that is accelerated by a zeroth-order
Doppleron resonance has been discussed by
Pritchard and Gould.'5 In general, the accelera-
tion of a Bragg resonance occurs when the atom-
field frequency detuning is such that the Bragg
resonance and the Doppleron resonance become de-
generate.

For concreteness, we assume that the momentum
of the atom in the direction perpendicular to the
standing-wave field is large enough to be treated
classically and that the field couples only two atomic
electronic levels le) and fg). The electrotransla-
tional states of the atom are then completely defined
by two quantum numbers i and n, where i = e or g
and n describes the transverse center of mass mo-
mentum of the atom, in units of Sk.

In the band theoretical description,'6 Bragg reso-
nances occur at the center and the edges of the first
Brillouin zone. They correspond to the avoided
crossing between two electrotranslational states
that correspond to the same electronic state and op-
posite transverse momenta. Under ideal conditions,
they couple only two states of transverse momenta
rhk and -rhk, where r is an integer, through a
virtual transition between the two electronic states.
For incident atoms in their lower state Ig), we have
then

(1)

In contrast, Doppleron resonances involve real tran-
sitions between the ground and excited electronic
states and the transfer of (2s + 1)hk of transverse
momentum, for instance,

1g, r-) e, r + 2s + 1). (2)

They correspond to the avoided crossing between
two electrotranslational states of opposite electronic
states and with translational momenta differing by
an odd number of Ik. These anticrossings can take
place anywhere in the first Brillouin zone,'6 but the
catalytic reaction considered here requires that they
occur at either its center or its boundary.

Considering for the sake of concreteness incident
atoms in the state 1g, n + 2m + 1), we discuss
how the Bragg transition to the final state Ig,
-(n + 2m + 1)) can be accelerated by orders of
magnitude, provided that it is degenerate with the
Doppleron resonance between this same initial state
and an intermediate state le, n) (see Fig. 1).

In the absence of interaction, the detuning
A = to - fl between the laser frequency fl and the
atomic transition frequency to required to achieve
this degeneracy is readily found by energy conserva-
tion to be

A + n2
= (n + 2m + 1)2 (3)

or
A = (2m + 1)(2n + 2m + 1), (4)

where frequencies are expressed in terms of the re-
coil frequency &t, = hk2 /2M, with M being the
atomic mass, and n and m must be integers.
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Fig. 1. Geometry of the Doppleron-catalyzed Bragg scat-
tering arrangement.

The introduction of the dipole coupling between
the atom and the standing-wave transforms the
crossing between the four relevant electrotransla-
tional states Ig,n + 2m + 1), Ig, - (n + 2m + 1)),
le, n), and le, - n) into avoided crossings. It also alters
the resonance condition (4), owing to the dressing of
the bare electrotranslational states by the laser
field.'7 If the corrected detuning is chosen appro-
priately, the relevant eigenstates become, in the
limit of weak laser field strengths and for m > n,

lq+g) = 2"l12[lg,n + 2m +1)
+ jg, -(n + 2m + 1))], (5)

lql-g) = 2-1"2[g, n + 2m + 1)

- 1g, -(n + 2m + 1))], (6)

I/ +e) = 2 1
2 (e,n) + le, -n)), (7)

jIke) = 21-/2(le, n) - le, -n)). (8)

To lowest order in the field strength, the upper and
lower electronic states therefore do not mix. This is
of course the same as in conventional Bragg scatter-
ing with large atom-field detuning. The difference
between the normal case and the present situation
is merely in the degree to which the degeneracy be-
tween the eigenenergies of the symmetric (qi+g) and
antisymmetric (fi'g) eigenstates is lifted. A lengthy
but straightforward analysis shows that in normal
Bragg scattering, the splitting of the eigenenergies
E+g and E-g scales as the field strength to the
2(2m + 1 + n)th power.'7 In Doppleron-catalyzed
Bragg scattering, in contrast, we find that it
scales as the field strength to the 2(2m + 1 - n)th
power only. As the period of Bragg oscillations
(Pendell6sung oscillations) scales as the inverse of
this splitting, we see that the degeneracy between
the Bragg and Doppleron resonances leads to a
considerable acceleration of the population trans-
fer between the states of transverse momenta
(n + 2m + 1)1k and -(n + 2m + 1)hk.

To illustrate this discussion, Fig. 2 summarizes
numerical results obtained by solving the time-
dependent Schrodinger equation for the (interaction
picture) Hamiltonian

1 "2
H = ~- + 11Ale)(el + h12 cos kU(je)(gj + h.c.), (9)

2M

where QR is the standing-wave Rabi frequency. In
this example, we have n = m = 3, so that we use a
Doppleron resonance between the states of trans-
verse momenta 1011k and 311k to accelerate Bragg
diffraction between the states of transverse mo-
menta 101k and -101k. The Rabi frequency is
chosen as t = 30, so that the detuning A leading to
a degeneracy of the Bragg and Doppleron resonances
is A = 80, which is approximately 10% off the value
A = 91 that follows from the zero-field resonance
condition (4). (All frequencies are in units of
the recoil frequency tor, and time is in units of
l/cor.) Figure 2 shows the probabilities for the atom
to have transverse momentum 1011k and -101k, re-
spectively. We note that after an interaction time
t = 360, the probabilities of finding the atom in
these states are both approximately 42%. At this
time, the system acts as an almost perfect beam
splitter. The essential point here is that this time
is approximately 860 times shorter than the time
that would be required to achieve the same result by
using normal 10th-order Bragg scattering with
a = 30 and A = 91, i.e., without the catalytic influ-
ence of the Doppleron degeneracy.

We have shown in a recent paper that in contrast
to Bragg resonances, Doppleron resonances are ex-
tremely sensitive to spontaneous emission." This
is because for atoms initially in their ground state
and large enough detuning, the population of the ex-
cited electronic state remains negligible in the first
case, while Doppleron resonances necessarily in-
volve real transitions between le) and 1g). Since the
present process involves Doppleron resonances as a
catalyst, it is therefore important to determine if the
excited state le) ever becomes populated. The states
of odd transverse momentum are particularly sig-
nificant, as they correspond to an atom in its upper
electronic state. Figure 2 also shows the time de-
pendence of the levels le, 3) and le, -3). Together
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Fig. 2. Populations of the states Ig, 10) [curve (a)],
Ig, -10) [curve (b)], le, 3) [curve (c)], and le, -3) [curve (d)]
as functions of time. Here A = 80&Or, 2R = 3 0

0J,, and the
time is in units of 11wo,.
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with the levels le, ±9) and le, ±11), they are the only
states that become significantly populated. We see
that although small, the populations of these states
are by no means negligible. Hence, spontaneous
emission may prove devastating if it occurs on a
scale small compared to the population transfer
time between the 101k and -10hk momentum
states. Yet, these populations remain sufficiently
small (1% on average) that an appropriate choice of
long-lived transitions with a natural lifetime of the
order of the inverse recoil frequency should lead to
an experimental demonstration of our scheme. We
can obtain an upper bound for the spontaneous
emission rate by noting that the transfer time is of
the order of 360/to, for the example of Fig. 1. For an
average upper electronic-state population of 10-2,
spontaneous emission will be negligible provided
that y << 3/to,. Considering as an example the in-
tercombination transition 3P -'S 0 of 40Ca, with a
transition wavelength A = 657.46 nm, a lifetime
X - 0.4 ms, and a recoil frequency o),/27T = 104 s-5,18
we find that this condition is well satisfied.

In summary, we have shown that by choosing
an appropriate atom-field detuning, such that a
Doppleron and a Bragg resonance become degener-
ate, one can achieve a catalytic enhancement leading
to an orders-of-magnitude increase in the speed of
Bragg population transfer. This technique offers a
promising alternative to achieve large-angle atomic
diffraction by standing waves. A detailed descrip-
tion of this theory, including a full assessment of the
effects of spontaneous emission, is the subject of our
continuing research.

This research is supported by U.S. Office of Naval
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Services Optics Program.
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